IV Year – I SEMESTER

T P C 3+1 0 3

RENEWABLE ENERGY SOURCES AND SYSTEMS

Preamble:

This course gives a flavor of renewable sources and systems to the students. It introduces solar energy its radiation, collection, storage and its applications. This covers generation, design, efficiency and characteristics of various renewable energy sources including solar, wind, hydro, biomass, fuel cells and geothermal systems.

Learning Objectives:

- To study the solar radiation data, extra terrestrial radiation, radiation on earth's surface.
- To study solar thermal collections.
- To study solar photo voltaic systems.
- To study maximum power point techniques in solar pv and wind.
- To study wind energy conversion systems, Betz coefficient, tip speed ratio.
- To study basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems.

UNIT-I:

Fundamentals of Energy Systems

Energy conservation principle – Energy scenario (world and India) – Solar radiation: Outside earth's atmosphere – Earth surface – Analysis of solar radiation data – Geometry – Radiation on tilted surfaces – Numerical problems.

UNIT-II:

Solar Thermal Systems

Liquid flat plate collections: Performance analysis – Transmissivity – Absorptivity product collector efficiency factor – Collector heat removal factor – Numerical problems. Introduction to solar air heaters – Concentrating collectors and solar pond.

UNIT-III:

Solar Photovoltaic Systems

Balance of systems – IV characteristics – System design: storage sizing – PV system sizing – Maximum power point techniques: Perturb and observe (P&O) technique – Hill climbing technique.

UNIT-IV:

Wind Energy

Wind patterns – Types of turbines – Kinetic energy of wind – Betz coefficient – Tip–speed ratio – Efficiency – Power output of wind turbine – Selection of generator(synchronous, induction) – Maximum power point tracking.

UNIT-V:

Hydro and Tidal power systems

Basic working principle – Classification of hydro systems: Large, small, micro – measurement of head and flow – Energy equation – Types of turbines – Numerical problems.

Tidal power – Basics – Kinetic energy equation – Numerical problems – Wave power – Basics – Kinetic energy equation.

UNIT-VI:

Biomass, fuel cells and geothermal systems

Biomass Energy: Fuel classification – Pyrolysis – Direct combustion of heat – Different digesters and sizing.

Fuel cell: Classification – Efficiency – VI characteristics.

Geothermal: Classification – Dry rock and acquifer – Energy analysis.

Learning Outcomes:

Student should be able to

- Analyze solar radiation data, extraterrestrial radiation, radiation on earth's surface.
- Design solar thermal collections.
- Design solar photo voltaic systems.
- Develop maximum power point techniques in solar PV and wind.
- Explain wind energy conversion systems, Betz coefficient, tip speed ratio.
- Explain basic principle and working of hydro, tidal, biomass, fuel cell and geothermal systems.

148

149

Text Books:

- 1. Solar Energy: Principles of Thermal Collection and Storage, S. P. Sukhatme and J. K. Nayak, TMH, New Delhi, 3rd Edition.
- 2. Renewable Energy Resources, John Twidell and Tony Weir, Taylor and Francis -second edition, 2013.
- 3. Energy Science: Principles, Technologies and Impacts, John Andrews and Nick Jelly, Oxford.

Reference Books:

- 1. Renewable Energy- Edited by Godfrey Boyle-oxford university, press, 3rd edition, 2013.
- 2. Handbook of renewable technology Ahmed and Zobaa, Ramesh C Bansal, World scientific, Singapore.
- 3. Renewable Energy Technologies /Ramesh & Kumar /Narosa.
- 4. Renewable energy technologies A practical guide for beginners Chetong Singh Solanki, PHI.
- 5. Non conventional energy source –B.H. Khan- TMH-2nd edition.